罗欢-5657威尼斯
师资队伍

罗欢

来源:     发布日期:2021-10-08    浏览次数:

罗欢-5657威尼斯

职称 副教授

职务 硕士生导师

主讲课程 计算机体系结构、可计算理论、java程序设计

研究方向 遥感数据信息提取和智能化处理、计算机三维视觉、模式识别、机器学习、深度学习

办公室 计算机学院2号楼409

电子邮件 hluo@fzu.edu.cn

罗欢博士,副教授,硕士生导师,目前就职于福州大学数学与计算机科学学院。2017年博士毕业于厦门大学信息科学与技术学院计算机科学系,获得计算机科学技术专业工学博士学位。研究兴趣主要包括:三维信息提取、计算机视觉、模式识别、机器学习、深度学习以及遥感数据信息提取和智能化处理。在三维视觉领域的ieee transactions on intelligent transportation systems、 ieee transactions on geoscience and remote sensing、ieee journal of selected topics in applied earth observations and remote sensing、isprs journal of photogrammetry & remote sensing等高水平期刊发表多篇学术文章。担任t-its,tgrs、j-star,grsl审稿人。

国家自然科学基金青年基金项目,面向异类三维点云的语义迁移自动标注理论与方法研究,g61801121,主持, 2018.01-2021.12.

福建省自然科学基金青年基金项目,面向异域三维点云的语义迁移自动标注理论与方法研究,2019j05034,主持, 2019.01-2022.12.

基于深度学习的高分辨点云语义标注研究,校人才基金,主持,2017.10-2019.10

期刊文章

lina fang, hao chen, huan luo*, et al., “an intensity-enhanced method for handling mobile laser scanning point clouds,” international journal of applied earth observation and geoinformation, 2022. (sci, 中科院一区,top期刊)

huan luo, quan zheng, lina fang*, et al., “boundary-aware graph markov neural network for semiautomated object segmentation from point clouds,” international journal of applied earth observation and geoinformation, 2021, doi:10.1016/j.jag.20 21.102564. (sci, 中科院一区,top期刊)

guo w, chen j, wang w, luo h*, wang s. three-dimensional object co-localization from moile lidar point clouds. ieee transactions on intelligent transportation systems, 2021.

luo h , zheng q , wang c , guo w*. boundary-aware and semiautomatic segmentation of 3-d object in point clouds[j]. ieee geoscience and remote sensing letters, 2020, pp(99):1-5.

h. luo, c. wang, y. wen and w. guo, "3-d object classification in heterogeneous point clouds via bag-of-words and joint distribution adaption,"ieee geoscience and remote sensing letters, 2019,vol. 16, no. 12, pp. 1909-1913

luo h., wang c.*, wen c., chen z., zai d., yu y., and li j., semantic labeling of mobile lidar point clouds via active learning and higher order mrf, ieee transactions on geoscience and remote sensing, 2018, doi:10.1109/tgrs. 2018.**

luo h., wang c., wen c.*, cai z., chen z., wang h., yu y., and li j., patch-based semantic labeling of road scene using colorized mobile lidar point clouds, ieee transactions on intelligent transportation systems, 2016, 17 (5): 1286-1297

wen c., li j.*, luo h., yu y., cai z., wang h., and wang c., spatial-related traffic sign inspection for inventory purposes using mobile laser scanning data, ieee transactions on intelligent transportation systems, 2015, 17(1): 27-37

wang h., wang c.*, luo h., li p., chen y., and li j., 3-d point cloud object detection based on supervoxel neighborhood with hough forest framework, ieee journal of selected topics in applied earth observations and remote sensing, 2015, 8(4): 1570-1581

huang f., wen c.*, luo h., cheng m., wang c., and li j., local quality assessment of point clouds for indoor mobile mapping. neurocomputing, 2016, 196 (c): 59-69

wang h., wang c.*, luo h., li p., cheng m., and li j., object detection in terrestrial laser scanning point clouds based on hough forest, ieee geoscience and remote sensing letters, 2014, 11 (10): 1807-1811

wang h., luo h., wen c.*, cheng j., li p., chen y., and j. li, road boundaries detection based on local normal saliency from mobile laser scanning data, ieee geoscience and remote sensing letters, 2015, 12 (10): 2085-2089

yu y., li j. *, wen c., guan h., luo h., and wang c, bag-of-visual -phrases and hierarchical deep models for traffic sign detection and recognition in mobile laser scanning data, isprs journal of photogrammetry & remote sensing, 2016, 113, 106-123.

zai d., li j*, luo h., wang c., 3-d road boundary extraction from mobile laser scanning data via supervoxels and graph cuts, ieee transactions on intelligent transportation systems, 2018, 19 (3): 802-813.

会议文章

w. wang, h. luo, q. zheng, c. wang, w. guo: a deep reinforcement learning framework for vehicle detection and pose estimation in 3d point clouds. icais (2) 2020: 405-41

h. luo, c. wang. 2016. exploiting location information to detect light pole in mobile lidar point clouds, international geoscience and remote sensing symposium, 87: 93-107 (ieee: ei).

h. luo, c. wang. 2017. auto-annotation of 3d objects via imagenet, association for the advancement of artificial intelligence conferences

上一篇
下一篇
网站地图